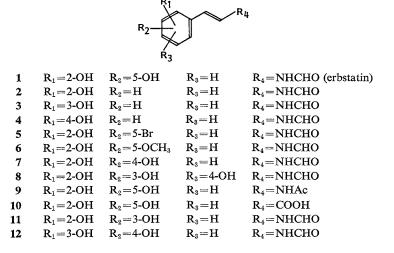
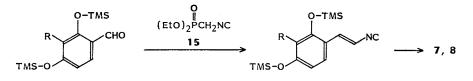
INHIBITION OF TYROSINE PROTEIN KINASE BY SYNTHETIC ERBSTATIN ANALOGS

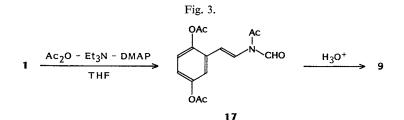
Sir:


The effective synthesis of the specific tyrosine protein kinase (TPK) inhibitor, erbstatin (1), and its dihydroxy analogs (11 and 12) was reported in the preceding paper¹⁾. Herein, mono-, di- and tri-hydroxy analogs of 1 have been synthesized by a similar procedure and their TPK inhibiting activities were evaluated.

Mono-hydroxy analogs such as 2-hydroxy- (2), 3-hydroxy- (3), 4-hydroxy- (4), 5-bromo-2hydroxy- (5) and 2-hydroxy-5-methoxy-compound (6) were prepared in high yields from corresponding aldehydes and SCHÖLLKOPF's reagent²⁰, diethyl(isocyanomethyl)phosphonate (15), as described in the preceding paper¹⁰. On the other hand, similar treatment of 2,4-di- or 2,3,4-tri-hydroxybenzaldehyde with the phosphonate (15) gave no desired products although a large number of variables including bases [NaN(Si(CH₃)₂)₂, BuLi and NaH] were assessed.


The protection, however, of the hydroxyl groups in the aldehydes with trimethylsilyl chloride ((CH₃)₃SiCl - Et₃N in THF) gave suitable materials 13 and 14 for subsequent reaction with the reagent (15) to give the intermediary isocyanides (16) [13: ¹H NMR (CDCl₃) δ 0.30 (18H, s), 6.35~6.6 (2H, m), 7.80 (1H, d, J=8.5 Hz), 10.36 (1H, s), 14: ¹H NMR (CDCl₃) δ 0.20, 0.25 and 0.28 (27H, each s), 6.62 (1H, d, J=8.5 Hz), 7.42 (1H, d, J=8.5 Hz), 10.27 (1H, s)] (Fig. 2). By acid hydrolysis (0.1 N HCl - EtOAc)¹⁾, the isocyanides (16) were directly converted into the desired formamides (7) and (8) with removal of the trimethylsilyl groups in 57% and 53%overall yields [7: ¹H NMR (acetone- d_{θ}) δ 6.25~ 6.55 (3H, m), 7.15 (1H, d, J=8.5 Hz), 7.56 (1H, dd, J=15 and 11 Hz), 8.17 (2H, s), 8.47 (1H, s), 9.1 (1H, br), 8: ¹H NMR (acetone- d_6) δ 6.43 (1H, d, J=9 Hz), 6.47 (1H, d, J=15 Hz), 7.76 (1H, d, J=9 Hz), 7.4 (2H, br), 7.62 (1H, dd, J=15 and 10.5 Hz), 8.1 (1H, br), 8.22 (1H, s), 9.2 (1H, br)].

Other related compounds (9) and (10) were prepared as follows. The peracetylation ($Ac_2O - Et_3N - p$ -dimethylaminopyridine in THF) of


Fig. 1. Erbstatin and its analogs.

13 R = H 14 R = O-TMS 16

DMAP: p-Dimethylaminopyridine.

Table 1. TPK inhibitory activities of erbstatin and its analogs.

Compounds	TPK-IC ₅₀ (µg/ml)
Erbstatin (1)	0.6
2	>100
3	>10
4	>10
5	>6.4
6	>6.4
7	>25
8	0.8
9	3.0
10	0.8
11	0.3
12	1.3

erbstatin gave triacetyl derivative (17) [¹H NMR $(CDCl_3)$ δ 2.28, 2.32 and 2.43 (9H, each s), 6.9~7.3 (5H, m), 9.30 (1H, s)] (Fig. 3). Selective removal of formyl and O-acetyl groups (0.1 N HCl in MeOH) gave 9 [¹H NMR (acetone- d_6) δ 1.99 (3H, s), 6.35 (1H, d, J=15 Hz), 6.50 (1H, dd, J=9 and 3 Hz), 6.70 (1H, d, J=9 Hz), 6.82 (1H, d, J=3 Hz), 7.60 (1H, dd, J=15 and 10.5 Hz), 9.2 (1H, br)]. Compound 10 was prepared by the Wittig reaction of 2,5-di-hydroxybenzaldehyde and (carbo-tert-butoxymethylene)triphenylphosphorane (Ph₃P=CHCOO^tBu) in benzene - THF (10:1) followed by acid hydrolysis (F₃CCOOH in CH₂Cl₂) [10: ¹H NMR (acetone- d_6) δ 6.0 (1H, br), 6.52 (1H, d, J=16 Hz), 6.82 (2H, m), 7.09 (1H, m), 8.02 (1H, d, J =16 Hz), 8.45 (1H, br)].

The TPK inhibitory activities of above derivatives (Fig. 1) are listed in Table 1. The TPK activities were assayed using the A-431 cell membrane fraction as the enzyme/substrate as described previously⁸⁾. As shown in the table, 2-(2,3,4-trihydroxyphenyl)vinylformamide (8), 2,5-dihydroxycinnamic acid (10), 2-(2,3-dihydroxyphenyl)vinylformamide (11) and 2-(3,4-dihydroxyphenyl)vinylformamide (12) showed potent inhibitory activities comparable to erbstatin (1). Other biological activities and the stability of these compounds are being studied.

Kunio Isshiki
Masaya Imoto
TSUTOMU SAWA
Kazuo Umezawa
Tomio Takeuchi
Hamao Umezawa

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

> Toshio Tsuchida Takeo Yoshioka

Sanraku Inc., Central Research Laboratories, Johnan 4 chome, Fujisawa 251, Japan

KUNIAKI TATSUTA

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

(Received March 7, 1987)

References

- ISSHIKI, K.; M. IMOTO, T. TAKEUCHI, H. UMEZAWA, T. TSUCHIDA, T. YOSHIOKA & K. TATSUTA: Effective synthesis of erbstatin and its analogs. J. Antibiotics 40: 1207~1208, 1987
- SCHÖLLKOPF, U.; R. SCHRÖDER & D. STAFFORST: Synthesen mit α-metallierten Isocyaniden. XXVII. Umsetzungen von α-metalliertem Isocyanmethyl- und α-Isocyanbenzylphosphonsäure-diäthylester mit Carbonylverbindungen. Liebigs Ann. Chem. 1974: 44~53, 1974
- 3) UMEZAWA, H.; M. IMOTO, T. SAWA, K. ISSHIKI, N. MATSUDA, T. UCHIDA, H. IINUMA, M. HAMADA & T. TAKEUCHI: Studies on a new epidermal growth factor-receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J. Antibiotics 39: 170~173, 1986